
Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

Recursive Algorithms

Recursion is a form of definition and of algorithms that is very important in computer

science theory as well as in practice. Recursive algorithms can be inefficient or efficient.1 A

recursive definition or a recursive algorithm is characterized by self-reference. Typically with

recursion, a function is defined in terms of an earlier version of itself. Since this self-reference

can't go on forever, there must be a termination condition. The termination condition is checked

first and if it does not apply then the algorithm goes through with the self-reference.

Example The usual prototypical example of a recursive definition is the factorial function

normally defined by n! = nA(n–1)A(n–2)A(n–3)...3A2A1 for positive integers and

0! = 1. A recursive definition of n factorial is:

Definition Factorial

0! = 1

N! = NA(N!1)! ; N , 0

To evaluate 5! we have 5! = 5A4!. To evaluate 4! we must go back to the

definition and we get 4! = 4A 3! and thus 5! = 5A4A3!. Similarly 3! = 3A2! which

implies 5! = 5A4A3A2!. We have 2! = 2A1!, and 1! = 1A0!. However the first part

of the definition gives 0! = 1. Putting all of this together we get

5! = 5A4A3A2A1A1 = 120.

Now the example just given may seem awkward but in a computing environment

recursive definitions are frequently easier to write and debug than non-recursive definitions. The

1Computing efficiency is a topic outside of the scope of this text. This does not mean
that I can't mention it or refer to it.

1

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

dirty work and record keeping is done by the compiler. The program will contain a definition

that is little more than the two-line definition given above.

2

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

Example The other prototypical recursive definition is Fibonacci numbers. Fibonacci

numbers show up a great deal in mathematics and computer science. However

we will not make any use of them in this book other than for this example. The

Fibonacci numbers are a sequence of integers denoted by F0, F1, F2, F3, The

easiest definition of Fibonacci numbers is recursive (there do exist non-recursive

definitions). The recursive definition is

F0 = 0

F1 = 1

Fn = Fn!1 + Fn!2 ; n $ 2.

By this definition we get F2 = F1 + F0 = 1 + 0 = 1. F3 = F2 + F1 = 1 + 1 = 2. F4 = F3 +

F2 = 2 + 1 = 3. The first few entries are given in the following table:

n Fn n Fn

0 0 13 233

1 1 14 377

2 1 15 610

3 2 16 987

4 3 17 1597

5 5 18 2584

6 8 19 4181

7 13 20 6765

8 21 21 10946

9 34 22 17711

10 55 23 28657

11 89 24 46368

12 144 25 75025

3

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

Figure 1 The Tree of Recursive Calls for F5.

The recursive definition of Fibonacci numbers is easy to use. However it is very

slow. For example, if we want to compute F5, the recursive definition requests

F4 and F3. But when we use the recursive definition to compute F4 it requires F3

and F2. Note that we have already had to compute F3 twice. The situation

snowballs from there. The full situation for computing F5 is shown in the tree

diagram in Figure 1. Computing F200 with the recursive algorithm would

severely tax a super-computer. Note that there are recursive definitions for

Fibonacci numbers that are efficient but they are not as simple as the usual

4

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

definition. Lastly, it is worth mentioning that in a spreadsheet the usual recursive

definition is very efficient.1

Define

1 5

2

1 1 5

2










  

where φ is the harmonic ratio or golden mean.

It can be shown using standard techniques used for difference equations that

. From this we can get a simpler formula: .
1 1

5 5
n n

nF   
1

.5
5

n
nF     

1The same algorithm works efficiently in one place and inefficiently elsewhere because
the spreadsheet as a programming environment works very differently from a general purpose
language such as C or Pascal.

5

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

An efficient non-recursive algorithm for the n’th Fibonacci number is:

Fibonacci Algorithm

Input n (integer)
 If n = 0 or n = 1 then

Begin
 Answer = n
 exit

End
PriorF = 0
F = 1

 For i = 2 to n do
Begin

switch = F
F = F + PriorF
PriorF = Switch

End
Answer = F

6

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

G Exercise 1 Generalized Fibonacci numbers are defined just like Fibonacci numbers

(Gn = Gn!1 + Gn!2) except that G0 and G1 can be any two numbers. From

this viewpoint Fibonacci numbers are just the special case of Generalized

Fibonacci numbers where G0=0 and G1=1. Solve for G7 when G0=1 and

G1=3. Do the same problem for G0=!1 and G1=2. Do the problem for

G0=1 and G1=4. (Note the similarity between the first and second cases.)

The case of Generalized Fibonacci numbers where G0 = 2 and G1 = 1 are called Lucas

numbers. They satisfy where Ln is the n’th Lucas number and φ and α aren n
nL   

defined as before with φ being the golden ratio.

G Exercise 2 Write a recursive algorithm using only multiplication for evaluating xn

when x is any real number and n is a non-negative integer.

Example (This example is somewhat more challenging that the previous ones. Feel free

to skim it, and go on.) The n’th Bell number Bn is the number of ways of

partitioning n (distinct) objects. One way of computing the Bell numbers is by

using the following double recursive algorithm. This algorithm computes

numbers with two arguments: B(i,j). The n’th Bell number, Bn is computed as

B(n,n). For example to find B3 compute B(3,3).1

B(1,1) = 1.

B(n,1) = B(n-1,n-1) for n > 1.

B(i,j) = B(i-1,j-1) + B(i,j-1) for n > 1 and 1 < j # i.

1This algorithm is a translation of a table method mentioned in many texts that is similar
to Pascal's triangle. However, Pascal's triangle which is covered later in this text has a simple
explanation. I have been unable to find one for this algorithm. (Perhaps it is equally simple, but
I sure have stumbled trying to find it.

7

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

G Exercise 3 Write computer code to implement the above algorithm for Bell numbers.

G Exercise 4 Use the previous exercise to compute Bell numbers B1 through B7.

8

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

Example A particularly wicked recursive function is the Ackerman function. Whereas it

has been important to theoretical computer science since before the first digital

computers, it became famous in recent years after the development of languages

with recursive calls (such as Pascal and C) and the development of personal

computers. It is defined as follows:

A(0,y) 7y + 1

A(x+1,0) 7A(x,1)

A(x+1,y+1) 7 A(x,A(x+1,y))

The problem with the Ackerman function is that although it is trivial to

implement in a computer language such as Pascal, it uses humongous time and

memory. Computing A(10,10) will blow away any computer.

9

Chapter 5 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

1. n GFN-First Case GFN-Second Case GFN-Third Case
0 1 -1 1
1 3 2 4
2 4 1 5
3 7 3 9
4 11 4 14
5 18 7 23
6 29 11 37
7 47 18 60

2. Input x (real number), n (integer n $0)
Function Power(x,n)

if n = 0 then return 1; exit;
return xAPower(x,n!1)

end;

If this is not clear to you, try to study it until you understand what is happening. You
may find this kind of thinking useful elsewhere.

Note: 00 is not defined. Hence this algorithm is not correct for x=0 and n=0. How would
you correct it? (Is it worth the effort?)

3. Function B(i,j)
If i = 1 then return 1
Else if j = 1 then return B(i-1,i-1)
Else return B(i-1,j-1) + B(i,j-1)

4. The first seven Bell numbers are 1, 2, 5, 15, 52, 203, and 877.

10

