
Chapter 4 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

1

4

Algorithms

Definition of an Algorithm

An algorithm is the abstract version of a computer program. In essence a computer

program is the codification of an algorithm, and every algorithm can be coded as a computer

program. An algorithm can be defined as follows:

< 1. An algorithm has precise initialization criteria

< 2. At every point in an algorithm there are precise unambiguous instructions as to what

to do next.

< 3. The termination criteria are precise and unambiguous.

< 4. The algorithm must terminate.

It is only rule four that is at all controversial. Consider for example a traffic light; it turns

consecutively green, yellow, then red, but never terminates. Is it following an algorithm? There

are two solutions: one is to waive rule four in certain situations. The other solution is to declare

that the traffic light algorithm only goes through the green—yellow—red sequence once. We

then run that sequence over and over without end. The problem with the second solution is that

we seem to be in effect running a proper finite algorithm without end, that is within an unending

algorithm. However, in general, we want algorithms to terminate; usually when a program has

an endless loop, we regard that loop as a bug.

Chapter 4 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

1When I say that there is no law against infinite graphs, or graphs with loops, or
permutation graphs or whatever, I am speaking of federal laws. Here in Alabama these things
are misdemeanors.

2

Figure 1 The Collatz Graph

The Collatz Graph

There is no law that a graph must

have either a finite number of vertices or

a finite number of arcs.1 Whereas we

cannot completely draw such a graph,

they are often satisfying to contemplate.

Let us consider a graph (that happens to

be a function) in which there is a node

corresponding to each positive integer.

Hence we have an infinite number of

vertices, but there will be only one arc

leaving each vertex. If the integer corre-

sponding to a node is even, we have an

arc leaving that node and going to the

node whose integer is one-half the first

integer. If the integer corresponding to a

node is odd, we have an arc leaving that node and going to the node whose integer is three times

the first integer plus one. This graph is the Collatz graph.

As an example, suppose we start on vertex 53. Since 53 is odd, we go to 3A53 + 1 = 160.

Since 160 is even we proceed to 160/2 = 80. Again 80 is even, so we proceed to 40 then to 20

to 10 to 5. 5 is odd so we go up to 16, then to 8, to 4, to 2 and to 1. From 1 we repeat the

sequence 1—4—2—1—4—2—1....

Chapter 4 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

3

The symbol 7is the assignment operator. For example, i 7i + 1 means replace i by i + 1.

In Basic this is written i = i + 1. In Pascal it is written i := i + 1. The arrow is used instead

of the equal sign because the assignment i = i + 1 is not and cannot be an equality.

The Collatz Algorithm

The Collatz graph is a function because there is only one arc leaving each node. If we

choose a node (i.e. a positive integer) at random, we have a strictly determined path that goes

on without ending. However, if the path ever reaches 1, then it stays on a circuit:

1—4—2—1—4—2—1.... Therefore we could ask the question: starting at a given integer, n,

how long does it take to reach 1? Having asked the question, lets write an algorithm to answer

it. Such an algorithm might be written:

The Collatz Algorithm

1. Input a positive integer n. Set counter 71.

2. Print n, counter.

3. If n = 1 then stop. Algorithm is finished.

4. If n is even then n 7 n/2 else n 73An + 1.

5. counter 7counter + 1.

6. Goto 2.

The term counter keeps track of the number of arcs transversed starting at the node (integer) n.

Step 2 prints the current vertex and the number of arcs transversed. The last printed line should

have n = 1 and counter equal to the total number of arcs transversed. A more proper expression

of this algorithm (that is without the Goto statement) might be:

Chapter 4 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

1A procedure is much like an algorithm. I use the word procedure now because the
question is raised whether the Collatz algorithm is actually an algorithm.

4

The Collatz Algorithm Again
1. Input a positive integer n. Set counter 71.

2. Repeat

Print n, counter.

If n is even then n 7 n/2 else n 73An + 1.

counter 7counter + 1.

3. Until n = 1.

4. Stop.

Is the Collatz Algorithm Really an Algorithm?
The Collatz procedure clearly satisfies the first three criteria of an algorithm.1 The input

is clearly defined. The termination criteria is clearly defined. At every step there is no

ambiguity about what to do next. The only condition that remains to be verified is that the

procedure always terminates. We know from the above example that the procedure terminates

if we start with n = 53. However, the procedure states that any positive integer is valid input.

Therefore, to be an algorithm it must terminate for any positive integer input.

The Collatz algorithm has been tested for billions of input. It has been shown that there

can be at most a few exceptional inputs that do not terminate. But it has not been shown that any

such inputs do or don’t exist. Hence, whether the Collatz algorithm is truly an algorithm is an

open question.

G Exercise 1 Suppose that you found an input N such that the Collatz algorithm did not

terminate, how would you know? (This is a thought experiment close to

theoretical computer science. Don't lose any sleep over it.)

G Exercise 2 Write the Collatz algorithm in computer code. Use a long integer format

so that you can deal with large integers. Use the mod function to format

Chapter 4 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

5

your output and so that you do not put a single number per line. It is not

necessary to write the iteration number as in the algorithm above (where

the iteration is given by counter) but simply to keep track of the iterations

and to output the final value.

Chapter 4 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

6

1. You would not necessarily know by running the algorithm. Since, it would never
terminate, you would not know whether it was a non-terminating case or if you simply
had not reached the termination point yet. You would know you had a counter-example
if the sequence repeated an integer (without hitting one). However, monitoring the
algorithm for a repeated integer might be difficult.

2. n: long integer
i: short integer
Input n
If n # 0 Then "Error": Quit.
i 7 0
Repeat

Begin
Print n
If n = 1 Then stop
Move to next column {This is pseudo-code!}
If (n mod 2 = 0) Then n 7 n'2 {test whether n is even}

Else n 7 3An + 1
i 7 (i + 1) mod 8 {if we want 8 columns}
If i = 0 Then new line
End

