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Mixed Chains

In this chapter we learn how to analyze Markov chains that consists of transient and

absorbing states.  Later we will see that this analysis extends easily to chains with (non-

absorbing) ergodic states.  Unlike in the previous chapters, I will use an example to first teach

the material.  First I am going to outline the steps of our primary procedure.

We are given some Markov chain, A, whose states consists of transient and absorbing

states.  It is convenient in what follows that we renumber the vertices if necessary so that the

absorbing states precede the transient states.  We then partition the matrix as follows:

.  All four sub-matrices are rectangular, with I and T necessarily square.  The

square sub-matrix I corresponds to the transitions of absorbing states to absorbing states, and is

thus an identity matrix.  The square sub-matrix T corresponds to the transitions of the transient

states to transient states.  The sub-matrix O, represents the transitions of absorbing states to

transient states and is thus all zeros.  The sub-matrix M (for mixed) gives the transitions of

transient states to absorbing states.

We will be interested in the matrix (I ! T) where I is an identity matrix of the same

dimension as T and is not the identity matrix I given earlier (which is likely to be dimensioned

differently).  We will find the inverse of the matrix TT = (I ! T)!1 which is denoted TT to

indicate that it relates transient states to transient states.  Multiplying TT on the left of M, we get

the matrix TA = TTAM, where the notation TA indicates a relation from transient states to

absorbing states.  The matrices TT and TA are the objects of our labors.
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Penney-Ante
The game Penney-ante1 is played by two players Alicia and Bernard.  They flip a fair

coin until they get a sequence of throws of the form heads-heads-tails in which case Alicia wins,

or they get heads-tails-tails and Bernard wins.  If we throw the coin three times, each has the

same probability of winning (1/8).  If neither wins we could follow with another three throws

and continue in that manner until one of them wins.  If the game is played that way, it is a fair

game: each has a 50% probability of winning.  However, Penney-ante is not played that way.

If after the first three throws there is no winner, we do a fourth throw and we examine the last

three throws.  If there is still no winner, we do a fifth throw, and we continue in that manner until

there is a win.  To most people it still seems intuitively to be a fair game.
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Figure 1 The game of Penney-Ante

Penney-ante is a game ideally suited to be represented by a Markov chain.  The

representation is given in Figure 1.  The states HHT and HTT are absorbing states because they

represent the end of the game.  In the start state, throwing tails does not initiate any winning

sequence, so for all practical purposes the game can be considered in the start state until heads

is thrown.  If the game is in state HT and heads is thrown, that heads becomes the possible first

heads of a winning sequence.  Clearly, once the game is in the state HH, only the sequence HHT

can win.  This is the key  to the insight Alicia (who is betting on HHT) may have a significant

advantage.
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HHT HTT Start H HT HH

HHT 1 0 0 0 0 0

HTT 0 1 0 0 0 0

Start 0 0 .5 .5 0 0

H 0 0 0 0 .5 .5

HT 0 .5 0 .5 0 0

HH .5 0 0 0 0 .5

The Transition Matrix for Penney-Ante

Start H HT HH

.5 -.5 0 0 Start 2 1.333 .667 1.333

0 1 -.5 -.5 H 0 1.333 .667 1.333

0 -.5 1 0 HT 0 .667 1.333 .667

0 0 0 .5 HH 0 0 0 2

The Matrix I-T and the Matrix TT = (I-T)-1

Following the course described above, we build the transition matrix by placing the

absorbing states first followed by the transient states.  The matrix is partitioned with M being

a 4-by-2 sub-matrix and T being a 4-by-4 sub-matrix.  We need the matrix I!T and then its

inverse, (I!T)!1.  The matrix (I!T)!1, which we denote by TT has an interesting interpretation.

 

The matrix TT is a matrix whose rows and columns correspond to transient states.  The

number in the box {m, n} (where m is the row and n is the column) represents the expected

number of times the chain will visit state n having started in state m.  For example, in the above

case, once in state HH we can expect to visit it twice.  However, that includes the visit of starting

there.  Hence the main diagonal of the TT matrix will contain entries greater or equal to 1.  So
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HHT HTT

Start .667 .333

H .667 .333

HT .333 .667

HH 1 0

The Matrix TA = TTAM

in real terms, starting in state HH we can expect to return there once (on average).  Starting in

state H we can expect to visit state HT 4/3 times before being absorbed.

Lastly, we multiply the matrix TT times the

matrix M (from the left)..  This gives us the matrix TA.

This is a matrix whose rows correspond to transient states

and whose columns correspond to absorbing states.

According to this matrix, on leaving the node we labeled

Start, the probability of being eventually absorbed in

HHT is .667 (or 2/3).  That is, Alicia has a two-thirds

probability of winning this game!  Similarly, the

absorption probabilities are the same at H as at Start.

This is because on leaving Start the chain always goes to H.  Also, the matrix verifies the earlier

observation, that on reaching the node HH, the only winning (that is, absorbing) node possible

is HHT.  On the other hand, having reached HT, there is still a one-third probability of reaching

HHT.  Note, that in the TA matrix, the rows must always add up to 1.

Compleat Craps

Craps is a dice game that is best analyzed as a Markov chain.1  The rules of craps are

fairly simple.  Craps can be played by any number of people.  The person throwing the dice is

the player.  The player throws an ordinary pair of dice.  If the first throw yields a 7 or an 11, he

wins his bet.  If that first throw yields a 2, 3, or 12, he loses the bet.  Any other throw, 4, 5, 6,

8, 9, or 10, establishes the point.  For example, if the player's first roll is a 4, then his point is 4.
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Figure 2 The Markov Chain for Craps

After that he keeps throwing the dice until he gets a 4 or a 7.  Any other throw (such as 2, 3, 4,
15) is irrelevant.  If he throws the point before 7 he wins the bet.  If he throws 7 first, he craps

out.  It is not hard to show that the player's probability of winning the bet is .492929....  The

Markov chain for craps is given in Figure 2.
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Start 4-p 5-p 6-p 8-p 9-p 10-p

Start 1.000 0.333 0.400 0.455 0.455 0.400 0.333 

4-p 0.000 4.000 0.000 0.000 0.000 0.000 0.000 

5-p 0.000 0.000 3.600 0.000 0.000 0.000 0.000 

6-p 0.000 0.000 0.000 3.273 0.000 0.000 0.000 

8-p 0.000 0.000 0.000 0.000 3.273 0.000 0.000 

9-p 0.000 0.000 0.000 0.000 0.000 3.600 0.000 

10-p 0.000 0.000 0.000 0.000 0.000 0.000 4.000 

The TT Matrix for Craps

Again, if the first throw is a 4, then that is the point.  After that the player keeps throwing

until he gets a 4 or a 7.  He has, in that instance, a probability of 3/4 of throwing a value other

than 4 or 7.  He has a 1/12 probability of throwing a 4 and a 1/6 probability of throwing a 7.

The TT matrix for craps is given below.  

We will use this matrix to calculate the expected number of throws in a game of craps.

The probability that the game of craps ends in one throw, is the probability that the player throws

a 2, 3, 7, 11, or 12.  That probability is 1/3.  The other probability is that the player establishes

a point.  We know that the probability that the player throws a 4 on his first throw is 1/12.

According to the matrix, the expected number of trips to transient states before being absorbed

is 4, which includes the initial visit to that state.  The expected number of throws for craps in

general is the summation of the probability of each outcome of the first throw times the expected

number of throws in each case:
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2 3 7 11 12

Start .028 .056 .167 .056 .028 

4-p .000 .000 .000 .000 .000 

5-p .000 .000 .000 .000 .000 

6-p .000 .000 .000 .000 .000 

8-p .000 .000 .000 .000 .000 

9-p .000 .000 .000 .000 .000 

10-p .000 .000 .000 .000 .000 

4-4 4-7 5-5 5-7 6-6 6-7 8-8 8-7 9-9 9-7 10-10 10-7

Start .028 .056 .044 .067 .063 .076 .063 .076 .044 .067 .028 .056 

4-p .333 .667 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

5-p .000 .000 .400 .600 .000 .000 .000 .000 .000 .000 .000 .000 

6-p .000 .000 .000 .000 .455 .545 .000 .000 .000 .000 .000 .000 

8-p .000 .000 .000 .000 .000 .000 .455 .545 .000 .000 .000 .000 

9-p .000 .000 .000 .000 .000 .000 .000 .000 .400 .600 .000 .000 

10-p .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .333 .667 

The Matrix TA Split Into Two Parts

Hence, in a game of craps the expected number of throws is roughly 2.7.

To complete our analysis of craps, we examine the matrix TA = TTAM.  

Again, the TA matrix shows the probability of ending in any given absorbing state

having started in any given transient state.  In this case, there is a unique starting state that we

have by pure chance labeled Start.  The probability of winning a game of craps is the combined
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probabilities of winning states marked 7, 11, 4!4, 5!5, 6!6, 8!8, 9!9, 10!10.  The sums of

those probabilities shown here is .493 whereas the correct probability is .492929....  The first

part of the matrix shown in the upper part of the box shows the probabilities of winning or losing

the game on the first throw, which can only happen from the Start state.  The second part of the

matrix shows that if your point is either 4 or 10, then your probability of winning is precisely

1/3.  If your point is 5 or 9, your probability of winning is precisely 2/5, and if your point is 6

or 8, your probability of winning is precisely 5/11.  
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Figure 3 A Mixed Markov Chain

Figure 4 The Chain of Figure 3 Reduced.

Example
The following example is of

importance because it illustrates the

application of the preceding tech-

niques for the case of a Markov chain

with transient and ergodic states that

are not necessarily absorbing.  Given

the chain in Figure 3, we ask, what is

the long probability term probability

of being in state B?  Note, that this

problem is very sensitive to where we

start.  For example, if we start in state

A, the long term probability of being

in state B is 0.  If on the other hand we start in state B or state C, the long term probability of

being in state B is .5 because B!C is an ergodic sub-chain with both B and C having .5

probability.  Let us suppose that our initial state vector is (0, .2, 0, .5, .3, 0).  That is, we start in

state B with probability .2, and in state D with probability .5, and state E with probability .3.  

To further analyze the problem it is

helpful to replace the chain of 9 with the

Markov chain of Figure 4.  Here we have re-

placed the ergodic nodes B and C with an

absorbing state B'.  The matrix analysis of this

chain is given below.



Chapter 35 out of 37 from Discrete Mathematics for Neophytes:  Number Theory, Probability, Algorithms, and Other Stuff by J.  M.  Cargal

11

D E F A B'

D 1.333 .667 .667 D .333 .667

E .667 1.333 1.333 E .167 .833

F .667 .333 1.333 F .167 .833

The Matrices TT and TA

The matrix TT gives the expected number of transitions from one transient state to

another before being absorbed.  It is the matrix, TA, on the right that is of interest to us.  If we

are in state D our probability of being absorbed in state B' is 2/3, but if we are in state E or F our

probability of being absorbed in B' is 5/6.  We have an initial probability vector of P0 = (.5, .3, 0)

for states D, E, and F.  Multiplying P0 times TA we get:

Note that neither P0 nor P4 is a true probability vector since they each add to .8 and not 1.  The

remaining .2 is the probability of starting in state B which is part of the ergodic sub-chain given

as B' in the reduced form of the chain.  The vector P4 says that if one starts in state D with

probability .5 and state E with probability .3 that the probability of ending in state A is .217 and

the probability of ending in state B' (the ergodic sub-chain B!C) is .583.  Hence the total

probability of ending in state B' is .583 plus .2 (the probability of starting in B') which is .783.

So for the starting vector (0, .2, 0, .5, .3, 0), the probability of ending in A is .217 and of ending

in the sub-chain B!C is .783.  That means there is a .783 probability that the chain will spend

half of its time in sate B.  The answer to our original question, what is the long term probability

of being in state B, is .5A.783 = .391.
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Figure 5 So, You Thought You Would Get Through
This Section Without Homework

G   Exercise  1 Solve for the matrices TT and TA for the Markov chain of Figure 5.

G   Exercise  2 If you start in state E what is the expected number of trips to state D

before being absorbed?

G   Exercise  3 If you start in state E, what are the probabilities of being absorbed in

states A and B?

G   Exercise  4 Given the initial state vector P0 = (.1, 0, .2, .4, .3, 0) what is the

probability of being absorbed in state A? 
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1.

2.

The expected number of trips to D after starting in E is 1.657

3.

4.


