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Inter-Section

A Note to the Reader
Until this point in the book, results have been derived or proven, or at least the nature of

the proof has been indicated.  However, proofs of the techniques of Sections 34, 35 and 36 as

well as the core concept of Chapter 37 are beyond this book and have been omitted.  Do not let

this deter you.  This material is still the most exciting material so far.  Learning to use these tech-

niques is rewarding and leads to substantial understanding.  The fact is most people who use

these methods have probably never seen the proofs.  Similarly, you can read and verify a proof

and still not understand the theorem.  Do not let yourself be deterred by math snobs.  You can

always get to the proofs later.  The idea that it is always best for semantics to precede syntax is

quite arguable and probably is a lousy generalization.  I will give sources for the proofs for those

who are ready now, and for the rest when they are ready.  To be able to read these sources you

should have had a course in linear algebra and you should have taken the usual calculus

sequence.  The methods of Sections 34 and 35 are justified in:

The core concept of Section 37 (that every two person zero-sum game has a value) is

demonstrated in:
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1I remind you that we are only considering finite chains.

2This is not precisely true.  What state we start in does effect the probability of being in
any state no matter how far ahead we look.  However, this effect becomes extremely small, and
in any practical sense is insignificant after a sufficient number of transitions.
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Figure 1 An Ergodic Chain

34

Ergodic Chains

Earlier we characterized ergodic chains as having both of the following two properties:

! Each node can reach any other node (the chain is one communicating class).

! The chain is not periodic.

An ergodic chain can be characterized in another way.  The long term state probabilities are

independent of the initial state vector.1  These

long term probabilities are also known as the

steady state probabilities.  Consider the Markov

chain in Figure 1.  This chain has the quality

that after roughly 40 transitions, there is a 9/68

probability of being in state A; there is a 5/68

probability of being in state B; there is a 9/68

probability of being in state C; and there is a

45/68 probability of being in state D.  Note, it

does not matter in what state you started.  With

an ergodic chain, if we wait for a sufficient

number of transitions where that number of transitions depends on the chain, then the probability

of being in any state is independent of where we started.2  
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1This raises the question why am I showing how to do these problems by hand when I
suggest using computer programs?  The reason is that I feel that seeing how it is done by hand
can add to the student's understanding of the problem and its solution.  
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Figure 2 Transition Matrix to
the 40'th Power

One way of finding the long term probabilities of

an Ergodic chain is to take the transition matrix M and an

arbitrary initial vector v, say v = (1,0,...,0).  Compute the

state vector for after n transitions, that is vAMn.  When you

reach a level n, where vAMn Ñ vAMn+1, that is the state

vector after n transitions is nearly identical to the state

vector after n + 1 transitions, then that vector gives the

long term probabilities.  Another way to find the long term

probabilities of an ergodic chain is to consider high powers

of the transition matrix M until the matrix stabilizes, that

is, it does not change (within, say, ten decimal places).  When that happens, each row of the

matrix Mn will be identical with the steady state vector (the vector giving long term

probabilities).  In the case of Figure 1  the matrix begins to stabilize at about n = 40; that is it

stabilizes at 40 transitions as is shown in Figure 2.  This shows the steady state vector for the

problem of Figure 1 to be v = (.132, .074, .132, .662).  Note that these long term probabilities

are consistent with the fractions given above.  

Solution of Ergodic Chains by Linear Equations

The steady state vector can be solved for using linear algebra at the high school level.

I am going to use this technique in the examples in this chapter.  I want to show you how it is

done.  However, in practice, you should use a computer program to do this.  Anything with more

than about four states is usually too cumbersome to do by hand.1  It so happens that the steady

state vector, v, is the only probability vector that will satisfy the equation vAM = v.  Such a vector
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1Such terminology is of no use to us in this book.  However, it is useful to make yourself
sound knowledgeable when discussing these topics.  Essentially, eigenvector is cool
terminology.  If you were to refer to that vector that when multiplied times the transition matrix
gives itself, that would be gauche and people might stop associating with you.    
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is known as an eigenvector.1  There can be many eigenvectors that satisfy vAM = v, but only one

will be a probability vector.  In  the case of our problem, we want to solve:

                In the above matrix equation, a, b, c, d, represent the long term probabilities of being

in states A, B, C, and D respectively.  Multiplying out the left side, we get a system of four

equations in four unknowns:

In a systems of equations for an ergodic chain such as this, it is always true that one equation

is redundant.  We can and we should eliminate one equation.  Often it is the case that one

equation will be more onerous that the others, and that equation will be eliminated.  Such is not

the case here, and we will arbitrarily eliminate Equation 4.  That leaves us with three equations

in four unknowns.  However, the long term probabilities must satisfy a + b + c + d = 1.  Such

is always the case (and this is what makes (a, b, c, d) a probability vector).  In every such

problem, you should eliminate one of the original equations and add the equation that has the
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variables adding to 1.  Doing this here and multiplying Equations 1, 2, and 3 by 10 and moving

all the variables to the left hand side, we get the system of equations:

The usual technique for solving a system such as this is to solve for each variable in

terms of a single variable, then substitute in Equation 4.  We will solve for each variable in terms

of variable a.  Equation 2 gives us .  Substituting this in Equation 1, we get c = a.

Substituting this in Equation 3, we get d = 5a.  Substituting for b, c, and d in Equation 4, we get

.  From this we get the values given earlier:

.
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1The market share example and the finite queue example (in a less general form) both
occur in a long-out-of-print book by Guillermo Owen titled Finite Mathematics (I think).
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Figure 3 The Product Loyalty Graph for Slamclaw Cus-
tomers

An Ergodic Example:  Market Share1

Consider the market

positions of three brands of

slamclaws:  Brand A, Brand

B, and Brand X.  Customers

who use Brand A return to it

80% of the time; 10% go to

Brand B; and the remaining

10% go to Brand X.  Cus-

tomers who use Brand B

return to it 50% of the time;  30% go to brand A; and 20% go to Brand X.  Customers who use

Brand X go to Brand A 50% of the time and to Brand B 50% of the time.  The market shares of

the three brands are given in Figure 3.  We would like to analyze the long term prospects in the

slamclaw business, and in particular we want to examine the potentials of the three players.

To solve for the long term probabilities of the Markov chain of Figure 3, we need to

solve the matrix equation:
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In this equation the variables a, b, and x represent the long term (or steady state) probabilities

for Brands A, B, and X.  The corresponding linear equations are:

Again, one of these equations is always redundant.  In this case Equation 3 is slightly simpler

than the other equations, so that is the equation that we definitely will not remove.  Rather

arbitrarily we will remove Equation 2.  We will multiply each equation by 10 to get rid of the

decimal points, and we will move all the variables to the left hand side of the equal signs.

Lastly, we must add the probability equation a + b + x = 1 so that again we have three equations

in three unknowns.  This gives us:

Adding 2 times Equation 1 to Equation 2 (and simplifying) we get .  Substituting for

b in Equation 2 (and simplifying) we get .  Lastly, substituting for both b and x in

Equation 3 we can solve for a.  From that we can solve directly for b, and x.  The values are:

As expected Brand A totally dominates.  Surprisingly, Brand B's long term market share is closer

to Brand X's than Brand A's.

G   Exercise  1 Analyze the market share example by studying the transition matrix.

Look at high powers of the matrix.  (Keep squaring the matrix until you
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Figure 4 A Four Node Ergodic
Chain

Figure 5 A Five Node Markov Chain

reach at least the 16th power (use software).)  Use different initial state

vectors and derive the state vectors after many transitions.  Either way,

you should get results consistent with the analysis above.

G   Exercise  2 Find the long term probabilities for the graph in Figure 4.

G   Exercise  3 Find the long term probabilities for the graph in Figure 4.  (Even though

this is a five node chain, its equations are particularly easy to solve by

hand.)  Note that without the loop from a to a, that it would be periodic

with period 2.
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2This is a realistic assumption with many criminal enterprises.
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Figure 6 A Finite Queue

The Finite Queue

By a queue, we mean a line.  In formal mathematics and engineering they are called

queues, and their study is called queueing theory.1  This example is nice and I think it is

important.  After we have finished with the work on the example, I will tell you why the example

is more realistic (and practical) than it seems.

The reason that we have a finite queue in Figure 6 is that whenever there are 8 people

in the shop, the doors are locked.  The state of the queue is the number of people in the queue.

State 0 thus corresponds to an empty queue.  We assume that in an interval of time, that there

is a probability of p that a customer arrives.  Customers always arrive singly.2  In the same

interval of time there is a probability of q that a customer is served.  It never happens that there

is a service and an arrival in the same interval of time.  Whenever there is an arrival, since that

means a new customer in the shop, the state increases by 1.  Whenever, there is a service, the

customer served leaves the shop, and the state decreases by 1.  In states 1 through 7 the

probability that the state does not change in an interval of time is the probability, 1!p!q, that

there is no service nor an arrival during that interval.  In state 0 there can be no service since

there is no one in the shop to be served.  Hence the probability of staying in state 0, during an

interval of time, is the probability, 1!p that there is no arrival.  In state 8 the doors are locked

and there can be no arrival, therefore the probability 1!q, of staying in state 8 during an interval
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of time is the probability that there is no service.  Letting xi represent the long term probability

of being in state i, the matrix form for solution of the long term probabilities of each state is:

This is equivalent to the nine equations:

As always one equation is redundant and is to be replaced by:

Ordinarily one would replace any equation other than Equations 1 and 9, since they are simpler
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than the other equations.  However, there is a pattern to the equations that we will utilize and it

is in fact Equation 9 that we will replace.

Solving Equation 1 for x1 in terms of x0, we get: .  Replacing x1 in Equation

2 and solving for x2 we get: .  Using the same strategy through Equation 7 we get

in general:  .  Substituting into Equation 10, we get the finite

geometric series:

Factoring out the x0, we get:

Using the finite geometric series formula we get:  , from which it follows that:

.
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The queue example seems to have several unreasonable assumptions.  In the period of time

concerned there can be exactly one arrival, or one service, or neither of these.  There

cannot be two arrivals, or two services, or an arrival and a service.  Thus the problem

seems unrealistic.  However, these assumptions become far more realistic when the period

of time is very short, such as 1 second.  In queueing theory the analysis is often done much

as we have done it here, with the time period then taken to an infinitesimal limit.  Thus the

model can be practical.  Also, the methods used here are similar in other ways to many of

the methods used in queueing theory.  Lastly, by closing the doors of the shop, we made

the queue space finite.  However, these methods can be extended.  We can consider a

potentially infinite queue and an infinite Markov chain.  For such a queue to make sense

the arrival probability must be less than the service probability (otherwise the queue

actually goes towards infinity).  With such an assumption our denominator (p/q)n goes to

0 and the formula derived here still works.

G   Exercise  4 The last two formulas do not work in the case where p = q.  What is xi

when p = q?

G   Exercise  5 The queue example has treated a shop where the doors close when there

are 8 people in the shop.  Give the general formula for when there are N

people in the shop.
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1.

Long term probabilities are approximately (.645, .242, .113). 

2. The long-term probabilities are:  a = 1&7; b = 1&14; c = 5&7; d = 1&14

3. a = 10&19; b = 4&19; c = 2&19; d = 2&19; e = 1&19 

4. If p = q each state is equally likely.  We get xi = 1&9.  (We basically get the finite
geometric series when x = 1.  1 + x + .. xn  = n+1.

5. If p … q let D = p&q.  Let N be the number of the people we allow into the shop.  Then xi

= (Di ! Di+1)&(1 ! DN+1) for i = 0, .. , N.

If p = q then xi = 1&(N+1) for i = 0, .. , N.


