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Figure 1 A Simple Probability Tree
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Probability Trees and the 

Law of Multiplication

Exclusive and Exhaustive Events

Probability trees are one of the most useful

tools in probability and applied mathematics.  We

will use them throughout the rest of this text.  The

graph in Figure 1 is a probability tree.  It has 4

vertices.  The vertex X is the root.  Every probability

tree has exactly one root.  The vertices A, B, and C

are the leaves.  In a probability tree there are arcs

leaving each node that is not a leaf.  These arcs have

non-negative numerical labels such that the arcs

leaving any node add up to 1 (the arcs will often have

other labels as well).  For example, in Figure 1 the arc from node X to Node A the label .2

implies that on leaving vertex X the probability is .2 of going to Node A.  The reason that the

(numeric) labels on arcs leaving a node add to 1 is that the events being led up to are exclusive

and exhaustive.  They are exclusive is another way of saying they are disjoint.  In this case that

means that, P(AB) = P(AC) = P(BC) = 0.  (Hence, P(A + B) = P(A) + P(B) = .5.) Since they add

up to 1, that means that every possibility is accounted for: the events are exhaustive.  After X;

A, B, or C must occur but not any two of these.  In general, a collection of events is exclusive

and exhaustive if they are disjoint and their probabilities add to one.  
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If the events A1, A2, through An are exclusive and exhaustive and X is any

event, then:  P(X)  =  P(XA1) + P(XA2) +...+ P(XAn).

Law of Total Probability (First Version)

The Law of Total Probability
Suppose that the events A, B, C are exclusive and exhaustive (as in Figure 1) then given

any other event, Y, the law of total probability says that P(Y) = P(AY) + P(BY) + P(CY).  More

generally:

This is just one version of the law of total probability; later we will encounter it again.  To

paraphrase:  given an arbitrary event, X, we can split it amongst any collection of exclusive and

exhaustive events.  The most important case is when we have an event, X, and its complement X)

(not X).  X and X)  are by definition exclusive and exhaustive.  In particular, given another event

Y, by the law of total probability, we have P(Y) = P(YX) + P(YX) ).  The law says:  The

probability that I work tomorrow is equal to the probability that it rains and I go to work, and

the probability that it doesn't rain and I go to work.
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Figure 2 A Probability Tree With Five Leaves
The tree in Figure 2 is also a probability tree.  Notice that besides labels for the arcs,

there are labels for each leaf.  The label for a leaf is derived by multiplying the labels on each

arc leading to that leaf.  For example, the label on leaf D is the product of .4 and .25.  Notice,

that the labels on all the leaves add up to 1.  This is always true.  If it is not true for a given

probability tree (that the labels on the nodes add up to 1) then a mistake has been made.  A
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warning:  if you later try to apply formulas to Figure 2 you might need to write C as AC.  In this

case C = AC.  C only occurs if A has occurred.  C is the same as A and C.  (Likewise, D = AD,

E = AE, F = BF, G = BG.)  
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Figure 3 The Raiders:  Commitment to Excellence

Conditional Probabilities



Chapter 23 out of 37 from Discrete Mathematics for Neophytes:  Number Theory, Probability, Algorithms, and Other Stuff by J.  M.  Cargal

1This is just a textbook example: the probability that the Raiders win is greater than this.

6

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

1, 4 2, 4 3, 4 4, 4 5, 4 6, 4

1, 5 2, 5 3, 5 4, 5 5, 5 6, 5

1, 6 2, 6 3, 6 4, 6 5, 6 6, 6

Table 1 Sum of the Die is 5

Let's consider a more specific example.  The Raiders are a fair weather team.  They play

less well under wet conditions.  This is illustrated in Figure 3.1  The probability that the condi-

tions are dry is .7.  If so, the probabilities that the Raiders win is .8 and that they lose is .2.  The

probability they win when it is wet is .6 and that they lose is .4.  By the law of total probability,

the probability the Raiders win is .56 + .18 = .74.  That is, by the law of total probability, the

probability the Raiders win (.56) is the probability that it is dry and the Raiders win (.56) plus

the probability that it is wet and the Raiders win (.18).  You do not even have to think about the

law of total probability.  Just add the leaves corresponding to the Raiders winning.  Notice how

the probability tree gives you an easy way of processing complex information.

Conditional Probabilities
Strictly speaking the probabilities in Figure 3 that follow the events wet and dry are

conditional probabilities.  We had to derive the unconditional probability P(win) = .74.  The

graph gives P(win*dry) = .8: the probability the raiders win given it is dry is .8.  Read the

vertical bar, *, as given.  The graph also gives that the probability the raiders win given it is wet

is .6:  P(win* wet) = .6.  Before giving the formal definition of conditional probabilities, let us

reconsider the dice example:
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2, 1

2, 2

2, 3

2, 4

2, 5

2, 6

Table 2   The First Die is a 2

The event, S5, that the sum of the die is 5, is 4 cases out of 36 so that P(S5) = 4/36 =  1/9.  That

is an unconditional probability.  We could ask a conditional question:  Given that the first die

is a 2, what is the probability that the sum is a 5?  In other words, what is: P(S5*F2)?  Now we

are given that the first die is a 2; our universe is reduced to only one column of the original table.

Given that the first die is a 2, the case that the sum is a 5,

is now 1 case out of 6 rather than 4 cases out of 36.  Hence,

P(S5*F2) = 1/6.  

A key concept involved with conditional probabilities is

information.  In a way the heart of conditional probabilities and

the upcoming concept of independence is information.  In this

case, the information that the first die is a 2 raised our estimate

of the probability that the sum is a 5 from 1/9 to 1/6.  We will

later define two events as independent, if the knowledge of one

event  effects the probability of the other event occurring.

We define conditional probability of A given B as follows:

Dividing by the probability of B is where we reduce the size of our universe to reflect

the given condition.  In the above example, P(S5*F2) is equal to P(S5AF2)/P(F2).  Now P(S5AF2) is

the probability that the sum is 5 and the first die is 2.  This is just one case out of 36 for a

probability of 1/36.  Altogether: P(S5*F2) = P(S5AF2)/P(F2) = (1/36)/(1/6) = 1/6.
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For any two events A and B, P(AAB) = P(A*B)AP(B).

The Law of Multiplication

If the events A1, A2, through An are exclusive and exhaustive and X is any event, then:

P(X)  =  P(X*A1)AP(A1) + P(X*A2)AP(A2) +...+ P(X*An)AP(An).

The Law of Total Probability (Second Version)

G   Exercise  1 What is the probability that the sum of two die is 4 given the first die is

2?  That is solve: P(S4*F2).

G   Exercise  2 Solve P(S4*F4).

G   Exercise  3 Solve P(S7*F2).

G   Exercise  4 Solve P(F2*S4).

G   Exercise  5 Solve P(F4*S4).

G   Exercise  6 Solve P(F6*S2).

The Law of Multiplication

If we take the definition of P(A*B) and multiply both sides by P(B), we get the identity:

P(AB) = P(A*B)AP(B).  Similarly, we can show:  P(AB) = P(B*A)AP(A).  This is in fact, the law

of multiplication:

The Law of Total Probability Revisited
We can use the law of multiplication to rewrite the law of total probability.

When we used the graph in Figure 3 to compute the unconditional probability that the Raiders

win, we, in effect, used this law:  P(Raiders win) = P(Raiders Win*it is dry)AP(It is dry) +

P(Raiders win*it is wet)AP(it is wet).
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Independence

Now we have come to the keystone of elementary probability.  Mastery of this topic is

the rite of passage into more serious probability.  This topic should one day seem simple to you,

and you will wonder why it took you so long to master it.  You may blame the teacher and very

likely the text (although surely the text can't be to blame).  In fact, we have reached a place that

requires a certain amount of digestion.  You should linger here.  Do not let impatience push you

ahead too soon.  By staying here until you have fully grasped the concept of independence, you

will save yourself much time later.  Mastery of this concept will better prepare you for

applications later, such as statistics.

We will define independence three times!  These definitions are equivalent.1  That means

if one definition is true all three are true.  If one is false, they are all false.  Anyone is sufficient

to test for independence.  This raises the question, why give all three definitions?  In practice,

one will be more useful than the others depending on the problem in question (and any rule

could be the useful one).  Using two rules is a good way to check your work.  If you get different

answers, you have made a mistake.  

Events A and B are independent if one of the following is true:

1 P(A*B) = P(A)

2 P(B*A) = P(B)

3 P(AAB) = P(A)AP(B)

Events A and B are dependent if they are not independent.



Chapter 23 out of 37 from Discrete Mathematics for Neophytes:  Number Theory, Probability, Algorithms, and Other Stuff by J.  M.  Cargal

10

The most common mistake I see when students test for independence is that the student

assumes P(AAB) = P(A)AP(B).  That is the student uses rule 1 or 2 to test for independence

of two events, but the student assumes that rule 3 is satisfied.  In effect, the student tests

for independence of two events after assuming independence, and therefore automatically

finds independence.

The assumption P(AAB) = P(A)AP(B) is often made because it is convenient for

calculation and without any other justification.  It is a most common mistake, and it

has shown up in courtroom verdicts (later overturned) and all sorts of pseudo-

scientific literature.  It occurs in industry all the time.  

Remember:

P(AAB) = P(A)AP(B)

 if and only if A and B are independent!

G   Exercise  7 Prove that the three tests for independence given above are equivalent.

That is, show that if one is true, then the others are true.  If one is false,

the others are false.  [This exercise is more theoretical than the others and

you might save it until you have finished the chapter and the other

exercises.]
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stir in the mathematics community because so many self-proclaimed ?experts,” all brandishing
their Ph.D.'s, wrote to tell her she was wrong when in fact she was correct.  In fact these self-
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1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

1, 4 2, 4 3, 4 4, 4 5, 4 6, 4

1, 5 2, 5 3, 5 4, 5 5, 5 6, 5

1, 6 2, 6 3, 6 4, 6 5, 6 6, 6

S6 and F1 are dependent

Example

Looking again at the fair throw of two fair die, let's consider the events the sum is 6, S6,

and the first die is 1, F1.  We can see from the table that P(S6) = 5/36.  However, we can also see

P(S6*F1) = 1/6.  That is, P(S6) … P(S6*F1) and hence S6 and F1 are dependent.  However, it is easy

to show that S7 and F1 are independent!

G   Exercise  8 Prove that S7 and F1 are independent.

Example You call someone about puppies they advertised for sale in the newspaper.  You

are interested in getting a female puppy.1  They have two puppies left.  You ask

is one of the puppies a female?  They answer yes.  Our question is, what is the

probability that the other is a female.  Logically, most people think that the

answer should be 50%; and it would be, if the question asked were is the puppy
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closest to you a female?  But the correct answer is a.  One way to see it is by

looking at the possibilities, which are:

1: MM

2: MF

3: FM

4: FF

By answering yes, they have reduced the possibilities to cases 2, 3 and 4.  In only

one of these is the other puppy a female.  Another way of solving the problem is

by application of the definition of conditional probability.  We are asking what

is the probability that both puppies are female given that one is a female?  Let

us denote these two events by FF and F1 respectively.  We want P(FF* F1) and

by definition that is .  The event FFAF1 is just the event FF (the
P FF F

P F
( )

( )
⋅ 1
1

only way that both puppies can be female and at least one be female is if they are

both female.)  But since we can assume that the genders of the two puppies are

independent, P(FF) = ¼.  By the law of addition the probability that at least one

puppy is female is the probability that the first is female (½) plus the probability

that the second is female (½) minus the probability that both are female (¼) to

give a combined probability P(F1) =  ¾.  Plugging into the formula given for

conditional probability, we get a.

Independence and Information
Again independence is about information.  Rule 1, P(A*B) = P(A), says that the

occurrence of B says nothing about the probability of A occurring.  Likewise rule 2, P(B*A) =

P(B), says that the occurrence of A says nothing about B occurring.  If two events are disjoint

(exclusive) they do reveal information about each other, because if one occurs, that means the
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If two (non-empty) events are disjoint, they are dependent!

other can't occur.  This is one of the most common mistakes that students make.  They think that

if events are disjoint that they are also independent.

G   Exercise  9 Use the definition of independence to prove that if A and B are disjoint

(P(AB) = 0) then A and B are dependent.  Ignore the trivial cases where

either P(A) = 0 or P(B) = 0.

If we consider the Raiders example, Figure 3, the Raiders are more likely to win if it is dry.  If

you are a gambler, and you have the information that the weather will be dry, it can change your

willingness to bet on the outcome of the game.  The events that the weather is dry and the

Raiders win are dependent.

D E F

A 0 .2 .1

B .1 .2 .2

C .1 .1 0

The table above is a table of joint probabilities.  It is an exclusive and exhaustive table

in that the entries are all disjoint and add to 1.  Each entry is the joint probability of its row and

column.  For example, P(BD) is the number in the B row and D column, .1.  The event A is the

first row, so its probability is .3.  The event E is the second column, so its probability is .5.  

G   Exercise  10 What is P(A*D)?  What is  P(A*E), P(A*F), P(A*B)?

G   Exercise  11 Are A and B independent?  How about A and D?  A and E?  A and F?

G   Exercise  12 What is P(B*D)?  What is  P(B*E), P(B*F)?

G   Exercise  13 Are B and C independent?  How about B and D?  B and E?  B and F?

G   Exercise  14 What is P(C*D)?  What is  P(C*E), P(C*F)?

G   Exercise  15 Are C and D independent?  How about C and E?  C and F?
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For the following exercises, assume that we make one fair throw of a fair die.  Let E be the

event the face is even.  Let Fi be the event that the face is i.  Let Li be the event that the face

is less than or equal to i.  Note that P(Li) = i/6.  For example, L2 is the event that the face is 1

or 2, and therefore P(L2) = 2/6 = 1/3. 

G   Exercise  16 Are E and F3 independent?

G   Exercise  17 Are E and F4 independent?

G   Exercise  18 Are E and L3 independent?

G   Exercise  19 Are E and L2 independent?

G   Exercise  20 Are L4 and L2 independent?

G   Exercise  21 Are L4 and L6 independent?

On Fair Throws and an Unsolvable Problem
(This Section Optional)

Throughout the examples I make mention of fair throws of a fair coin (or fair die).  It is

generally assumed that the reader knows what this means.  Now, the reader can better appreciate

it because fair tosses are independent tosses.

It is frequently a first lesson in probability classes to raise the following question:  A man

flips a coin ten times in a row and gets heads each time.  What is the probability that he throws

heads on the eleventh throw?  The stock answer is ½, followed by the cliché that the coin has

no memory.  The incorrect answer, that the professor is presumably waiting for, is for some

student to say, 1/2048:  the probability of 11 heads in a row.  

The trouble with the preceding scenario is that ½ is the correct answer only if it is

stipulated that the coin is fair and is fairly tossed.  The student who answers that the probability

should be  1/2048 is thinking in terms of a law of averages.  The problem is there is no law of
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averages in probability; what is called the law of averages is a particularly bad misinterpretation

of the law of large numbers.1  

If we were to see a man toss a coin ten heads in a row and to get ten heads, wouldn't it

be fair to suspect that the coin and/or the throw is unfair?  In this more general (and more

lifelike) problem, what is our estimate that he throws heads on the eleventh throw?  This is a

fundamental question of probability and statistics (since it calls for a decision based upon

observed data, we are now crossing into statistics).  Intuitively we should place the probability

that he throws heads again as pretty high.  One solution technique says that answer should be

11/12, and I would place that as a lower bound for the answer.2  The fact is that the question is

somewhat philosophical, and there probably will never be a universally agreed on answer.  If

the man who is tossing the coin bets money on the outcome of the eleventh throw, I would bet

with him.  If he bets $100 that the eleventh throw is tails, I would ride along on that bet if I

could.  This problem is a simplified version of life and death problems facing the military.  I

know; I have on occasion worked on such problems.
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1.

2.

3.

4.

5.

6.

7. We need to show that the following conditions are equivalent.  First we will assume that
neither P(A) = 0 or P(B) = 0 in which case P(B*A) and P(A*B) would not be defined
respectively.
1. P(A*B) = P(A)
2. P(B*A) = P(B)
3. P(AAB) = P(A)AP(B)
We will prove equivalence by showing 1Y3Y2 and 3Y1.  (This scheme also implies that
2Y1.)  We start by assuming 1.  P(A*B) = P(AB)/P(B) = P(A).  Multiply both sides of
the second equality by P(B) and we get 3.  Divide both sides of 3 by P(A) and we get 2.
Divide both sides of 3 by P(B) and we get 1. 
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8. This can be proven any one of three different ways!!

1:  P(S7*F1) = P(S7) = 1/6.

2:  P(F1*S7) = P(F1) = 1/6.

3:  P(S7AF1) = P(S7)AP(F1) = 1/36.

9.

10. 0; .4; a; 0

11. Remember any one of these problems can be tested any one of three ways!
no (see exercise 9); no (same reason); no; no.

12. .5; .4; b

13. no; yes; no; no

14. .5; .2; 0

15. no; yes; no

16. No: P(E) = ½; P(F3) = 1/6; but P(EAF3) = 0.

17. No: P(E) = ½; P(F4) = 1/6; but P(EAF4) = 1/6. 

18. No: P(E) = ½; P(L3) = ½; but P(EAL3) = 1/6.

19. Yes: P(E) = ½; P(L2) = a;  P(EAL2) = 1/6.

20. No: P(L4) = b; P(L2) = a; but P(L4AL2) = a.

21. Yes: P(L4) = b; P(L6) = 1; P(L4AL6) = b.


