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1The notation (m, n) here refers to a matrix of size m by n when previously the same
notation referred the greatest common divisor of m and n.  Fortunately the context usually makes
it clear which applies. 
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A 1 by 1 Matrix, a 2 by 3 Matrix and a 4 by 1 Matrix.

18

Matrices

Definitions and Basic Operations

Matrix algebra is also known as linear algebra and it is one of the most important

disciplines of mathematics.  It pervades virtually all of mathematics, but it could be argued to

be closest to geometry.  In this chapter, we will look at the relation between matrices and graphs.

A matrix is a rectangular array of numbers.  An (m, n) matrix is an array with m rows and

n columns  and is said to be m by n.1  We will refer to the element in the m'th row and the n'th

column as the {m,n} element.  For example, in the (2,3) matrix in the above box, the {1,2}

element is -1.  The {2,3} element is 7.  We will be interested only in the operation of multiplica-

tion of matrices.  However, in this section we will look at a couple of more elementary

operations that are included for completeness.  These two operations are matrix addition and

multiplication of a matrix by a scalar.
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The Sum of Two 3 by 2 Matrices is a 3 by 2 Matrix

Multiplication of a Matrix by the Scalar 2.

Two matrices can be added if and only if they have the same dimensions.  That is, each

must have the same number of rows and columns.  In that case, their sum carried out element

by element.  The new matrix is also of size (m,n) and its {i,j} element is the sum of the

respective {i,j} elements.  

A scalar, in most applications, means a

real number.  Scalar multiplication of a matrix

means multiplying a real number times a matrix.

The scalar can be multiplied times the matrix

from either the left or right.  The operation consists of multiplying each element of the matrix

by the scalar.

Multiplication of Matrices

Multiplication of one matrix by another, is by far the most important matrix operation

and will be used in much of the rest of this book.  Two matrices can be multiplied if the left

matrix has the same number of columns as the right matrix has rows.  Just look at their

dimensions.  An (m,n) matrix can be multiplied times an (n,p) matrix and their product has

dimension (m,p).  That is the product has the same number of rows as the left matrix and the

same number of columns as the right matrix.  

Already without any idea of how to do the product of two matrices, we can show that

given two matrices A and B, it is not necessarily true that AAB must equal BAA.  For example if

A has dimension (1,4) and B has dimension (4,1) then AAB is of dimension (1,1) and BAA has
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1Again this is purely custom.  Vectors often are defined abstractly in terms of vector
spaces.  In that case vectors have certain properties and might not be column or row matrices.
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dimension (4,4), so in this case AAB can't equal BAA.  If A has dimension (1,4) and B has

dimension (4,2) then AAB has dimension (1,2) but BAA does not even exist.

To summarize, we now know when we can multiply two matrices and we know the

dimension of the product matrix.  We now just have to learn how to do it.  The secret of matrix

multiplication is that it is a generalization of multiplying a row matrix times a column

matrix.  Incidently, it is customary to refer to a row matrix or column matrix as a vector.1  A

row matrix is of form (1,n) and a column matrix is of form (n,1); so their product must be of

dimension (1,1).  (If we multiplied them in the opposite order, we would have a product of

dimension (n,n).)  We know that we can multiply a (1,4) vector times a (4,1) vector, but we

cannot multiply a (1,4) vector times either a (5,1) vector or a (3,1) vector.  That is, our

requirement for multiplying a row times a column is that  the two vectors have the same number

of elements.  The multiplication is carried out by multiplying the corresponding elements of each

vector (that is the first times the first, and the second times the second, etc)  and then by adding

the products; “matching” elements are multiplied and then their products are summed.  This is

easier to learn by example than by words.  For example: , because

1A5 + 3A7 + (-2)A1 = 24.  

If we multiply a (m,n) matrix times an (n,p) matrix, we get a (m,p) matrix.  The {i,j}

element of the product is just the i'th row of the first matrix times the j'th column of the second

matrix.  For example, given the (2,3) and (3,1) matrices:
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AAB is a (2,1) matrix.  Its {1,1} element is the first row of A times the first column of B (that B

only has one column simplifies things a little).  Its {2,1} element is the second row of A times

the first column of B.  We have:   

because   .

As we have shown above, matrices are not commutative, that is AAB … BAA (usually), but we do

have associativity:  A(BC) = (AB)C, and we also have distribution: A(B + C) = AB + AC and

(B + C)A = BA + CA.  There is no trick to proving that matrix multiplication is associative and

distributes over addition.  These things are proven by applying the definition of multiplication

to the cases and showing that the results are equal.  The proofs are a little laborious, but they are

not difficult.

G   Exercise  1 For the matrices in the box above, perform the following multiplications:

AAB, BAC, CAD, AAC, DAB.
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To multiply matrices A (m, n) and B (n, p) we need to set aside (m, p) space for the product

matrix C.  Also, we need to initialize every entry of C to 0.  Having done that, the

multiplication algorithm is:

For Row 7 1 to m

   For Col 7 1 to p

   For k 7 1 to n

C[Row, Col] 7 C[Row, Col] + A[Row, k]AB[k, Col]

Next k

Next Col

Next Row.

The Multiplication Algorithm for Matrices.
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Applications of Matrices to Graphs

Incidence Matrices
There are many ways to represent graphs by matrices.  We will concentrate on incidence

matrices.  We represent an m-vertex graph by a square matrix of dimension (m,m).  The {i,j}

entry of the matrix has an entry of 1 if there is an arc from vertex i to vertex j.  Otherwise {i,j}

has a 0.  For example, consider the graph:

Its matrix is:  
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This means that to represent an m-vertex graph on a computer you can use an m by m sized array

M, with M(i,j) = 1 if there is an arc from vertex i to vertex j.  (Sometimes graphs have more than

one arc from a given vertex to another.  In that case this representation does not work.)

Powers of Incidence Matrices
One of the most interesting features of incidence matrices is the meaning of their powers.

The second power of G is G2 = GAG, and the n'th power, Gn is the product of G times itself n

times.  We can illustrate the significance of these powers by looking at the second and third

powers of the above matrix, G.  We have:

These matrices do not satisfy the definition of incidence matrices since they do not just have 0's

and 1's, but they are highly related to incidence matrices.  Consider the matrix G2.  The {4,3}

entry which is 2 indicates that there are 2 ways to go from vertex 4 to vertex 3 in the graph via

paths of exactly 2 arcs.  If we look at the vertex {5,3} in matrix G3, its 6 implies there are 6 paths

of length 3 from vertex 5 to 3.  They are:  5-5-5-3;  5-5-3-3;  5-3-3-3;  5-5-4-3;  5-4-3-3;  5-4-5-

3.  In general if n is a positive integer, Gn gives the number of paths of exactly n arcs from each

vertex to each other vertex.  Note from the last example that these paths can be highly redundant

in that one path might go through the same vertex more than once. 
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Figure 1 All 3-by-3 Permutation Matrices
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Figure 2 Multiplication of a Column Matrix by Permutation Matrices

Permutation Matrices
Remember a graph is a per-

mutation of its vertices, if there is exactly

one arc leaving each vertex and one arc

entering each vertex.  It follows that the

incidence matrix M represents a permuta-

tion graph, H, if and only if M is a square

matrix containing only 0's and 1's and

there is exactly one 1 in each row and each

column. 

 Remember also that one interpretation of a permutation is that it is a rearrangement of

its elements.  Now, if we perform a permutation of a collection of objects and then we perform

another permutation of those same objects, the net result is a permutation of the objects.

Similarly, if the matrix M represents the first permutation and the matrix N represents the second

permutation, the matrix P = MAN represents the net permutation.  In Figure 2 are all of the

permutation matrices of size (3,3).  If you multiply any two of these matrices, you will get one

of the six matrices as the product. In Figure 2 each 3-by-3 permutation matrix is multiplied
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times the same column vector (matrix) .  Each product is a different permutation of the

three entries of the vector.

G   Exercise  2 Construct two permutation matrices, M, N of the same size (so that they

can be permutations of the same set of objects) and so that MAN … NAM.

The existence of such matrices means that permutations do not commute.

That is, if I perform two permutations on a collection of objects, the net

result is (usually) dependent on the order that I perform the permutations.

G   Exercise  3 Find two permutations that do commute (MAN = NAM).  Hint: Consider

permutations that affect disjoint collections of objects.  Remember, a

permutation may leave particular objects unmoved.

Periodic Matrices (Feel free to skip and go to the next topic: Inverses)

Periodic Markov chains will be very important later and we will redefine them and prove

other properties in Section 30.  A graph is periodic if it is strongly connected (it is possible to

go from any vertex to any other with the direction of the arcs) and if on leaving any vertex we

only return on multiples of some integer greater than 1.  (Note we are only discussing finite

graphs!)  The lowest number which satisfies this property is said to be the period of the graph.

Note the least period a graph can have is 2.  Also, this definition assumes a very important

property that will be proven in the Appendix to Section 30.  Suppose a graph is strongly

connected.  If on leaving a given node we can only return on multiples of 6, and 6 is the smallest

integer (greater than one) with this property, then the property is true of all vertices of the graph.

That is the graph is of period 6 because each node is of period 6 (this will all be made precise

in Section 30).  For example the graph in Figure 3 node d looks to be of period 4, but it is in fact
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Figure 3  A Graph of Period 2 With Interesting Incidence Matrices

Figure 4  A Graph of Period 2

of period 2 just like node a is.  On leaving d, you might return after 6 transitions, and of course

6 is not a multiple of 2.

Suppose that M is a matrix of a strongly connected graph.  It will be shown in the

Appendix to this section that M has 0's in all of its powers if and only if the graph is periodic.

Furthermore, (it will be shown) that if a graph (with matrix M) is strongly connected and is not

periodic, then there is a power n, such that Mk contains no 0's for k $ n. 

Some Examples

G   Exercise  4 Construct the incidence matrix of the graph in Figure 3.  Compute its

first six powers.
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Figure 5 A Graph Not Strongly Connected

The graph in Figure 4 has matrices M, M2 and M3 as follows:

Since the graph is periodic of period 2, all powers of its matrix will have 0's.  In fact all even 

powers will be alike and all odd powers will be alike as to the position of the 0's.

If we consider the graph in Figure 5, its matrix is  and all of

its powers have 0's.  However, the graph is not periodic.  It can have both of these properties

because it is not strongly connected.



Chapter 18 out of 37 from Discrete Mathematics for Neophytes:  Number Theory, Probability, Algorithms, and Other Stuff by J.  M.  Cargal

12

=.

1

2

5

9

3

3

6

5

5

1

7

6

1

6

2

6

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

2

5

9

3

3

6

5

5

1

7

6

1

6

2

6

=.

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

2

5

9

3

3

6

5

5

1

7

6

1

6

2

6

1

2

5

9

3

3

6

5

5

1

7

6

1

6

2

6

Inverses
Identity Matrices

Let us consider square matrices of

dimension (n,n).  Such matrices can always be

multiplied times each other in any order.  The

matrix which has 0's everywhere except for the

main diagonal which is all 1's is known as the

identity matrix  and is denoted by In.  Usually the

dimension is clear and the n is left off.  In has the

property that for any other square matrix M of the

same dimension that IAM = MAI.  In is the special permutation matrix that sends each element

back to itself.  If for some matrix M there is a matrix M'  such that MAM' = M'AM = I then M' is

called the inverse of M. 

G   Exercise  5 Show that the matrix  has no inverse.  Hint: construct a (2,2)

matrix whose elements are variables, and try to solve the implied

equation. 
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It will be useful in Section 35 to find inverses of matrices.  Since we are studying

matrices in this chapter, we will learn to do inverses here.  The following technique is not only

the best known and perhaps the easiest, but is good from a computational standpoint.1  Anytime

a matrix has an inverse, this method will find it.  We take the (square) matrix in question and

place next to it on the right an identity matrix of the same dimension.  We operate on the first

matrix until we have turned it into an identity matrix.  Simultaneously, everything we do to the

first matrix we do to the second.  When we are finished, the matrix on the right is the inverse to

the matrix we started with on the left.  The legal operations are the following:

I. It is permissible to exchange any two rows.

II.  A row can be multiplied by a non-zero constant.

III.    Any multiple of a row can be added to any other row.

If it is impossible to turn a matrix into the identity (of its dimension) then it has no

inverse.
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The general strategy of inverting a matrix is to take care of the columns from left to right.

As an example, let us find the inverse of the incidence matrix that we studied earlier:

Original matrix on left, identity on right.

0 1 0 0 0 1 0 0 0 0

1 0 0 1 0 0 1 0 0 0

0 1 1 0 0 0 0 1 0 0

0 0 1 0 1 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1

Interchange first two rows.

1 0 0 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 1 0 0

0 0 1 0 1 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1

Subtract second row from third.

1 0 0 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 -1 0 1 0 0

0 0 1 0 1 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1
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Subtract third row from fourth and fifth.

1 0 0 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 -1 0 1 0 0

0 0 0 0 1 1 0 -1 1 0

0 0 0 1 1 1 0 -1 0 1

Interchange fourth and fifth rows.

1 0 0 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 -1 0 1 0 0

0 0 0 1 1 1 0 -1 0 1

0 0 0 0 1 1 0 -1 1 0

Subtract fourth row from first row.

1 0 0 0 -1 -1 1 1 0 -1

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 -1 0 1 0 0

0 0 0 1 1 1 0 -1 0 1

0 0 0 0 1 1 0 -1 1 0



Chapter 18 out of 37 from Discrete Mathematics for Neophytes:  Number Theory, Probability, Algorithms, and Other Stuff by J.  M.  Cargal

16

Subtract fifth row from fourth row.  Add fifth row to

first row

1 0 0 0 0 0 1 0 1 -1

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 -1 0 1 0 0

0 0 0 1 0 0 0 0 -1 1

0 0 0 0 1 1 0 -1 1 0

We have just shown that: .

Almost always if a matrix is invertible and has only integer entries then its inverse with have

non-integer entries (unlike the example just done).

G   Exercise  6 Invert the following matrices:  

(Note:  That M' is often denoted by M!1).
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Appendix to Section 18

Proofs

We assume that all graphs are finite.

Theorem:  If G is an incidence matrix, then Gn  is the matrix enumerating the number of paths

of length n.

Proof:  This is proven by induction.  Clearly, the statement is true if n = 1.  We then need only

show that if the statement is true for any positive integer n, that it is true for n + 1.  Writing

Gn+1 = GAGn the {i,j} entry of Gn+1 is the sum of all of the products {i,k}A{k,j} as k ranges over

all of the vertices of the graph.  {i,k} is a 1 or a 0 depending on whether there is an arc from

vertex i to vertex k, and {k,j} is the number of paths of length n from vertex k to vertex j.  The

product {i,k}A{k,j} is then the number of paths from vertex i to vertex j with k as the second

vertex.  Since all of the possible second vertices are considered in the sum, the {i,j} entry of Gn+1

is the number of paths of length n + 1 from vertex i to vertex j.

For the following proofs we will use the fact that every node of a strongly connected

periodic graph is periodic (and has the same period).  This fact is proven in the Appendix

to Section 30.  Since that proof does not rely on any of the material in this appendix, there

is no problem of circular logic.

Theorem:  If a matrix represents a strongly connected graph, all powers of its  matrix contain 0's

if and only if the graph is periodic.

Proof:  We will assume the matrix M is of an n-element graph, G, and is thus n-by-n.  Suppose

G is periodic and is of period m.  (Remember m > 1.)  Let x be any node of the graph.  Then the

{x,x} entry of Mh (h $ 1) must be 0 unless m*h. The fact that G is strongly connected and

periodic implies each node has an arc leaving it (and entering it).  Hence there is an arc from

node x to some node y.  If  m*h the {y,x} entry of Mh must be 0.  Suppose otherwise.  Then there
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is a path of length mAk from y to x with k a positive integer.  Now if we transverse the arc from

x to y and then adjoin the path from y to x, then we have a path of length mAk + 1 from x to

itself.  This contradicts that fact that the period of the graph is m, hence the {y,x} entry of Mh

is 0.  We still have to prove that if a graph is not periodic then for some power r, the matrix Mr

has no zero entry.  Consider the entry {i,i}.  There must be paths from i to i of two lengths, r and

s, that are relatively prime.  Otherwise all paths from i to i are multiples of some constant greater

than 2, and then the node is periodic and so is the graph (see comment above).  By Bezout’s

lemma we can concatenate the paths of length r and s to get paths of arbitrary length k = ar + bs.

However, this does not count if either a or b is negative.  It is not difficult to show that for

sufficiently large integers that a positive a and b can be found.  Similarly for a sufficiently large

integer N there is a path from any vertex back to itself for any length greater than N.  Since the

graph is strongly connected there is a path from any vertex i to any other vertex j of length less

than n.  Hence all powers of the matrix of length N + n or greater will have no zero entries.  Note

that we can prove from elementary properties of matrices that once a power u exists such that

Mu has no zeros then 

Mk contains no 0's for k $ u. 
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5. If the inverse is then we have and that gives us

four equations:  a = 1; 0 = 0; c = 1; 0 = 1.  That fourth equation is a little too tough to
solve!  The inverse does not exist.

6.


