17

Stirling Numbers of the Second Kind: Counting Partitions

Again: a partition of n objects is a division of these objects into separate classes. Each object must be in one and only one class and partitions with empty classes are not allowed. A question we might easily ask is *how many ways can we partition n objects into k classes?* For example, *how many ways can we partition 4 objects into 2 classes?* This number is denoted

 $\begin{cases} 4 \\ 2 \end{cases} and is called a$ *Stirling number of the second kind*. There is no agreed upon standard of

notation for these number; other books display them differently.¹ Note the similarity between

Stirling numbers $\begin{cases} n \\ k \end{cases}$ and binomial coefficients $\begin{pmatrix} n \\ k \end{pmatrix}$. To solve for $\begin{cases} 4 \\ 2 \end{cases}$ we can simply

enumerate all of the cases. This is done in **Figure 1** which shows that $\begin{cases} 4 \\ 2 \end{cases} = 7.$

¹I am using D. E. Knuth's notation from his great work *The Art of Computer Programming*, Vol I, 3rd. ed. Addison-Wesley, 1997.

a b	c d	
ac	b d	
a d	bc	
a	bcd	
b	acd	
С	abd	
d	abc	
	ab ac ad a b c d	a bc da cb da db cab c dba c dca b dda b c

Figure 1The Partitions of 4
objects into 2 classes

Given that
$$\begin{cases} 7 \\ 4 \end{cases}$$
 = 350, enumeration of Stirling numbers is almost always impractical.

What is perhaps the easiest approach is recursion. Suppose we want to calculate $\begin{cases} n \\ k \end{cases}$. That

is, how many ways can we put n objects into k classes? Let us select a single object which we will call *Fred*. We will now consider the two cases: either Fred occupies a partition class by himself or he is in a partition class with other objects. If he is in a class by himself, then there

are
$$\begin{cases} n-1 \\ k-1 \end{cases}$$
 ways to put the other n-1 objects into the other k-1 classes. If Fred is not alone,

there are ${\binom{n-1}{k}}$ ways to put the other n-1 objects into k classes. Having done that, there are

k choices (the k classes) where to place Fred. This gives us the following recursive relation:

Chapter 17 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

$$\begin{cases} n \\ k \end{cases} = \begin{cases} n-1 \\ k-1 \end{cases} + k \begin{cases} n-1 \\ k \end{cases}$$
. As always we need initial conditions to halt the recursion. This gives

us the full recursion:

$$\begin{cases}
n \\
n \\
n
\end{cases} = 1 \\
\begin{cases}
n \\
1
\end{cases} = 1 \\
\begin{cases}
n \\
1
\end{cases} = 1 \\
k-1
\end{cases} + k \begin{cases}
n-1 \\
k
\end{cases}$$

The Recursion for Stirling Numbers of the Second Kind

If we apply the above definition to compute
$$\begin{cases} 5\\2 \end{cases}$$
 we get:

Chapter 17 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal

A table of the Stirling numbers of the second kind through $\begin{cases} 10\\ 10 \end{cases}$ is given below.¹

k\n	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		1	3	7	15	31	63	127	255	511
3			1	6	25	90	301	966	3025	9330
4				1	10	65	350	1701	7770	34105
5					1	15	140	1050	6951	42525
6						1	21	266	2646	22827
7							1	28	462	5880
8								1	36	750
9									1	45
10										1

Exercise 1 Use the above table and the recursive formula to evaluate

∫12 | 11

¹An identical table is found in the book by Pólya, Tarjan, and Woods which I have referenced as an excellent book several times in this text. However, I generated my table using a spreadsheet. In fact spreadsheets are ideal for this purpose and it can be done quite swiftly.

1.
$$\begin{cases} 12\\11 \end{cases} = \begin{cases} 11\\10 \end{cases} + 11 \begin{cases} 11\\11 \end{cases}$$

but
$$\begin{cases} 11\\ 10 \end{cases} = \begin{cases} 10\\ 9 \end{cases} + 10 \begin{cases} 10\\ 10 \end{cases} = 45 \text{ [from the table]} + 10. \text{ The final answer is then} \\ 45 + 10 + 11 = 66. \end{cases}$$