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Formula 1   A Good Computational Form for Permutations

15

Counting

Permutations

Let us examine a real-life problem.  As a university professor I feel that teaching twenty

students for one hour a week is too much of a demand on my time and that it cuts into my

research (on sour mash).  Therefore, in order to cut back on my teaching load in future classes,

I have decided to flunk most of my students this semester.  Specifically, I am going to give one

A, one B, one C, one D, and I'll flunk everyone else.  Also, in order to keep from taxing my

mental resources, I will pick the four passing students randomly.

The question of this section is how many ways can I pick the four students out of twenty?

In particular, the order of students matters.  If I give Fred an A, Mary a B, Stanley a C, and

Repunzel a D,  that is different than giving Mary an A, Fred a B, Stanley a C, and Repunzel a

D.  In other words, how many ways can I pick four out of twenty students with respect to order?

The quantity I am asking for is the number of permutations of four objects out of twenty and it

is denoted by P(20, 4).  On a calculator the number of permutations of r objects out of n will

usually be denoted by Pn,r or by  nPr.  To answer, our specific problem of choosing P(20,4) is

quite easy.  There are 20 possible choices for who gets an A.  Having chosen the A there are 19

remaining choices for the B.  That leaves 18 choices for the C, and 17 choices for the D.  Conse-

quently, the number of possibilities is 20A19A18A17 = 116,280.  

The formula for P(n, r) is derived exactly as  the above problem was solved:
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Formula 2   A Good Formula for Proving Theorems About Permutations

Formula 3  A Recursive Formula for Permutations Which is Excellent for Computations

Notice that the expression n(n–1)(n–2)A...A(n–r+1) has r terms.  For example, to choose 3 out of

5 objects with respect to order, there are 5A4A3 = 60 possibilities.  This formula can be computed

using an iteration from 1 to r (or 0 to r–1).  A  general formula for P(n, r) that you will see in

many texts is:

Again, n! is read n factorial and means nA(n!1)A(n!2)A...A3A2A1 (with 0! defined as 1).  Formula

2  works through cancellation:  The terms in the denominator cancel terms in the numerator to

give exactly the same expression as in Formula 1 .  To see why Formula 2  is bad computation-

ally consider P(100,2).  Lastly, a recursive formula for P(n, r) which is excellent computationally

is:

The foundation of Formula 3  is that there are n ways to pick 1 out of n objects; and the number

of ways to choose r out of n objects is n, the number of ways of choosing the first object, times

the number of ways of choosing r-1 objects out of the remaining n-1 objects. 

Suppose we have n objects to line up, and we want to know how many ways to line them

up with order respected.  This is a problem you probably learned to solve in high school.  There

are n choices for the first object; n–1 choices for the second object, and so on, down to 1 choice

for the last object.  Multiplying these numbers we get n! which happens to be equal to P(n,n):

the number of ways of permuting n out of n objects.

G   Exercise  1 Suppose we want to arrange n objects in a circle (let's assume there are

exactly n positions).  We are interested in counting the number of ways
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To prove three objects are equivalent, such as objects x, y, z, it is not necessary to directly

prove each object implies each other object.  That would mean six cases to be solved.  It

is sufficient to prove, for example, that x implies y and y implies z and z implies x.  In this

way you have solved only three implications, but x implies z follows from x implies y and

y implies z.  z implies y follows from z implies x and x implies y.  y implies x follows from

y implies z and z implies x.

of arranging the objects with respect to order.  What is important is not

where an object sits, but its relationship  to the other objects.  How many

ways can we do this?  Hint:  The answer is not n!.

G   Exercise  2 Show the equivalence of the three formulas for P(n, r).  

Binomial Coefficients

Let us apply the above formula to count poker hands.  If we compute the number of ways

of choosing 5 out 52 cards, P(52, 5),  we get 311,875,200.  However, this is not right.  P(n, r)

counts the order of cards chosen.  For example, under this formula the hand AÌ9Ë8Ì5Ê2Í is

counted separately from 5Ê2ÍAÌ8Ì9Ë, because though the cards are the same, they are ordered

differently.  However, in poker we don't care what order the cards are dealt in.  Any five-card

hand like AÌ9Ë8Ì5Ê2Í has P(5,5) = 5! = 120 permutations (or orders).  Hence in the formula

P(52,5) each hand is counted 120 times.  The correct number of poker hands is  which
P(52 5

5
, )
!

is 2,598,960.  Whereas we refer to objects chosen with respect to order as permutations, objects

chosen without respect to order are called combinations and are denoted C(n, r) or .  The
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Formula 4 The Number of Combinations of r Out of n Objects

latter notation is what you will usually see in books.  On calculators you will see Cn,r or nCr.  We

have essentially derived the formula:

C(n, r) is also known as a binomial coefficient for a reason to be explained later.  The

binomial coefficient C(n, r) is the number of way of picking r out of n objects without respect

to order.  Another way of looking at it is that C(n, r) is the number of ways of arranging n objects

where r are distinguished by some characteristic.  In terms of our problem at the beginning of

the chapter of picking 4 students out of 20, originally their order mattered because the four

students were to get different grades.  Suppose now that we are picking 4 students to be shot,

presumably still with the intent of lowering my future enrollments (I've been to more than one

school that would have approved of this).  Now, if we were to pick Mary, Fred, Stanley, and

Repunzel, it would not matter in what order we picked them.  Therefore, the correct answer is

our original answer 116,280 divided by 4! and giving C(20,4) = 4,845.
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Formula 5 A Standard Formula for Combinations Which is Not a Good Computational
Formula

Formula 6 A Useful Identity

Formula 7 Another Formula for Combinations

Most texts give the following formula:

This definition is lousy computationally (again consider C(100,2)) but it is useful for proving

formulas such as:

An easy way to see that Formula 6  is true, is to consider that selecting r out of n objects to use

for some purpose is the same as selecting the n - r objects that you will not use.1  A good

computational formula is:

It is useful to remember that there are r terms in both the numerator and denominator of

Formula 7 .  Before using Formula 7  you should use Formula 6  to minimize r.

A computationally excellent recursive formula for combinations is:
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Formula 8  A Computationally Good Recursive Formula for Combinations

This formula can be derived immediately by using Formula 3 .  Again Formula 6  should be

used to reduce r before using Formula 8 .  Formula 8  is virtually identical to Formula 7  but

has one advantage.  Formula 7  should be done using a iteration scheme and such that the

operations are done in the order: .  If instead we multiply out

the numerator first, and then we multiply out the denominator, we are liable to encounter

overflow.  With Formula 8 , the operations are done in the correct order automatically. 

G   Exercise  3 Prove that Formula 5 , Formula 7 , and Formula 8   are equivalent.
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Figure 1 Pascal's Triangle (as a Road Map)

The Binomial Graph1

Consider the road map in Figure 1.  Think of each vertex as an intersection.  We start

at the intersection on level 0.  Our question is how many ways are there for us to reach a given
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intersection?  Notice that each intersection has a level.  At every intersection we come to, we

can make one of two choices.  We can go left or right.  If we are going to the 5'th level, we must

make 5 choices.  If we choose to make 3 left turns, it doesn't matter at which intersections that

we turn left; we will come to a unique vertex which we can denote by [5,3] because it is on level

5 and it takes 3 left turns (and 2 right turns) to get there.  This last statement is the heart of the

argument, so study Figure 1 until you are sure that the statement is correct.  For the general

intersection [n, r] n denotes the level, and r is between 0 and n, because to reach an intersection

on level n, we have n decisions to make and we can choose to go left anywhere from 0 to n

times.  We can look at each intersection on level n in terms of the n left-right decisions it took

to get there.  Each intersection is a list of n symbols, some of them L and some of them R.  But

since all that matters is the number of L symbols, the number of ways to get to intersection [n, r]

is just   Notice that the graph illustrates what we already know:

  Now consider any intersection in the interior of the graph.  To get

to that intersection we must go through the intersection on the previous level immediately to the

left or the intersection on the previous level immediately to the right.  The number of ways to

get to the new intersection is the sums of the numbers of ways to get to the two intersections

immediately above it.  This is illustrated in Figure 1 where each intersection [n, r] is labeled by

.  The figure is essentially Pascal's triangle and we have essentially proven the famous

identity:
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Formula 9 Pascal's Binomial Identity

This identity can also be understood in another way.  Suppose we want to choose r out of n

objects without regard to order.  We mark one of the n objects with an X.  Then the number of

ways to choose r out of the n objects is the number of ways to choose r objects not including the

marked object plus the number of ways to choose the r objects including the marked object.  In

the former case we are choosing r out of n - 1 objects and in the latter case, we choose the

marked object and we have to choose the remaining r - 1 objects out of n - 1 remaining objects.

There are many identities (known as binomial identities) like Formula 9 .  Many of them can

be understood by appealing to Formula 1 .  Formula 9  is also the basis for a recursive

algorithm for generating binomial combination numbers.  This algorithm has two terminating

conditions:  C(n, n) = 1, and C(n, 0) = 1.  The recursive algorithm based upon Formula 9  is

very inefficient in both time and memory.  The reason is that the algorithm does many of the

calls repeatedly.  For example to compute C(5,3) by Formula 9  you must compute C(4,3)  and

C(4,2), but to computing C(4,3) and C(4,2) each requires you to compute C(3,2).  

G   Exercise  4 Study the inefficiency of computing C(5,3) recursively using Formula

9  and C(n,n) = 1, and C(n,0) = 1.  Study this by constructing a tree.  The

top vertex would be C(5,3) and right below it would be vertices corre-

sponding to C(4,3) and C(4,2) since they are called by C(5,3).  Continue

until each line of descent ends in a terminating condition.

G   Exercise  5 Write a recursive algorithm for computing based upon Formula

9 .
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The Binomial Theorem

The Binomial Expansion
An expression like X + Y is called a binomial.  If we raise the binomial to an integer

power such as 5, we get terms such as XY4, X2Y3, and Y5.  The exponents on each product must

add to the power, in this case 5.  The only problem is to compute the constants that we multiply

against each term.  One way of doing this is to simply read off the level of Pascal's triangle

corresponding to the power.  For example to compute (X + Y)5, we read off the fifth level of

Pascal's triangle to get:

This is why the combination numbers are called binomial coefficients.  We will not use

the binomial theorem, but if you intend to continue in the mathematical sciences you need to

memorize it.

Example The sum  is the number of ways of

picking subsets out of n objects.  First there is the empty subset of which there

is 1, then there is the number of subsets of size 1, , and so on.  Another

way to count the number of subsets of n objects is to consider that each element

has two possibilities:  either the element is in the subset or it is not.  The number
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of subsets is then 2×2×2×...×2 or 2n.  Therefore we have:

.

Probability Problems With Counting

This book will begin the study of probability in section 20.  However, we now have the

tools to begin the study of basic probability problems.  For example, to figure out the probability

of being dealt a particular poker hand, you divide the number of poker hands of the type you are

interested in by the total number of poker hands which is:  If you don't

know the various poker hands, ask someone; there are not many and they are easy to learn.  In

fact of all the standard hands (pair, two-pair, three-of-a-kind, straight, flush, full house, four-of-

a-kind, straight-flush) probably the most difficult to calculate is the two-pair hand.  The

probability of being dealt two-pair is calculated as follows:

Example We need to calculate the number of two-pair hands that can be dealt by an

ordinary 52 card deck.  First we calculate the number of ways we can choose 2

values out of 13.  This is where many people go wrong.  They calculate 13

choices for the first value and 12 for the second value, giving a total of

13A12 = 156 possible cases.  However, this is wrong because it counts aces and

kings, and kings and aces as two different cases.  Therefore it is off by a factor

of 2.  What we want is Now for each value (such as

Aces and Kings) we need to pick 2 out of 4.  This can be done in
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The problems that immediately follow depend on proficiency in counting and with

binomial coefficients.  Solving these problems is an art that one learns with practice.  It is

a good example of why the answers to all the problems are in the back of the book.  

ways, and has to be done for each value.  This means we

have to pick the fifth and remaining card.  Now there are 4 cards already selected

and which can't be selected for the fifth card.  Also, there are 4 cards remaining

in the two values of the pairs.  They can't be selected either because that would

give us a full house.  Therefore the remaining card must be selected out of 44

cards and that can be done in ways.  The total number of

two-pair hands we can be dealt is thus:  

The probability that you are dealt a two-pair hand is then:

G   Exercise  6 Calculate the probability in poker of being dealt a one-pair hand. 

G   Exercise  7 Calculate the probability of being dealt a three-of-a-kind hand.

G   Exercise  8 Calculate the probability of being dealt four-of-a-kind.
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G   Exercise  9 Calculate the probability of being dealt a full house.

G   Exercise  10 Calculate the probability of being dealt a straight flush.

G   Exercise  11 Calculate the probability in poker of being dealt a flush.

G   Exercise  12 Calculate the probability of being dealt a straight.

G   Exercise  13 Suppose you are playing with a deck that has two jokers as wild1 cards.

What is the probability of being dealt two pair?

G   Exercise  14 Suppose you are playing with an ordinary 52 card deck, and suppose one-

eyed jacks (there are two) are wild.  What is the probability of being dealt

two pair?

G   Exercise  15 Suppose you are playing with an ordinary 52 card deck, and suppose one-

eyed jacks are wild.  What is the probability of being dealt three-of-a-

kind?

G   Exercise  16 The Florida Saturday lottery requires picking 6 out of 49 numbers for a

jackpot typically around 7 million dollars.  If you choose 5 out of the six

numbers correctly, you can make around 5 thousand dollars.  If you buy

one ticket (that is you choose 6 numbers) what is the probability that you

get exactly 5 out of the 6 correct numbers?
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1. It matters not where we place the first object (or which is the first object).  The problem
is then where do we place the other objects relative to the first?  There are n!1
candidates for the first seat on the left of the first object.  There are n!2 candidates for
the seat immediately to the left of that object, etc.  Altogether there are (n!1)! seating
arrangements.

2. The first formula is equivalent to the second formula can be seen by canceling the
denominator with the numerator in the second formula.  In order to finish the problem,
it is sufficient to prove the first formula equivalent with the third.  Let us consider the
first formula when r , 1:  P(n, r) = n(n!1)...(n!r!1).  Notice that the part (n!1)...(n!r!1)
is, by the first formula, P(n!1,r!1) implying P(n, r) = nP(n!1,r!1).  If r = 1 both
formulas give the same result.  Clearly, then the first formula implies the third.  Going
the other way, we repeatedly  apply the third formula.  At each step we decrease r by 1.
Eventually r will equal 1 and we will be finished.  Applying these steps it can be seen
we achieve the same result as the first formula.  (The more sophisticated among you may
suspect that the best way to show the first and third formulas are equivalent is by proof
by induction.  You may be right.  Induction is extremely close to this topic of recursion.
However, this edition of this text does not cover induction.  I may put it in a future
edition.) 

3.  That Formula 5  and Formula 7  are equivalent can be seen by canceling the (n!r)! out
of the numerator and denominator of Formula 5 .  To finish the problem, it is sufficient
to prove Formula 7  and Formula 8  are equivalent.  They are clearly equivalent when
r = 0.  If r , 0 factor n'r out of Formula 7  and apply Formula 7  to the remainder and
you get the second expression of Formula 8 .  This shows that the two formulas are
consistent with each other.  To see that Formula 8  terminates, notice that each step (of
the second part) r is decreased by 1.  Eventually, r = 0 and the algorithm is finished.

4. You should get a tree with a whole lot of vertices.

5. Again, this particular recursion is quite inefficient as you should discover from the
previous exercise.  The algorithm goes like this:

Define Function C(n, r)
Begin

If n < r or r < 0 then "error"
If r = 0 Then Return 1

Else Return C(n!1, r) + C(n!1, r!1)
End

The last statement in the algorithm makes two recursive calls on itself.  This can easily
be implemented in a language such as Pascal or Microsoft's QuickBasic.  Again, it will
be highly inefficient whereas the recursive algorithm based upon Formula 8  is highly
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efficient.

6. There are C(13,1) = 13 ways to pick the value of the pair.  There are C(4,2) = 6 to pick
2 out of the four cards.  There are C(12,3) = 220 ways to pick the remaining 3 values.
For each of these there are C(4,1) = 4 ways of picking the particular card.  The
probability of being dealt a one-pair hand is 13A6A220A4A4A4 divided by the total number
of poker hands, 2,598,960.  This yields .422569 (roughly).

7. There are C(13,1) = 13 ways to pick the value of the three-of-a-kind and there are
C(4,3) = 4 ways to pick the three cards.  There are C(12,2) = 66 ways of picking the
other two values and there are C(4,1) ways of picking each of those cards.  The total
number of three-of-a-kind hands is 13A4A66A4A4 = 54,912 with a probability of .021128
(roughly).

8. The number of ways of picking the value of the four-of-a-kind is C(13,1) = 13.  The
number ways of picking the particular 4 cards is C(4,4) = 1 (I included this for
consistency with the previous two cards).  The number of ways of picking the remaining
card is C(48,1) = 48 (if we found this like in the previous two problems it would be
C(12,1)AC(4,1) = 48).  The number of 4-of-a-kind hands is 13A48 = 624 for a probability
of .000240 (roughly).

9. There are C(13,1) = 13 ways to pick the 3-of-a-kind and there are C(12,1) = 12 ways to
pick the two-of-a-kind.  (Note, it is not correct to say there are C(13,2) ways to pick the
two values;  the reason is that in this case, order counts!)  There are C(4,3) = 4 ways to
pick the 3-of-a-kind (once their value is chosen) and there are C(4,2) = 6 ways to pick
the 2-of-a-kind.  The number of full house hands is 13A4A12A6 = 3744 for a probability
of .001441 (roughly).

10. A straight-flush can be characterized by two things:  its suit and its highest card.  There
are C(4,1) = 4 ways of picking the suit.  The high card ranges from ace down to 5 (in that
last case, the ace is the lowest card) for a total of 10 high cards within the suit.
Altogether there are 40 straight-flushes with a probability of .000015 (roughly).
(Compare this to a total of 48 hands with 4 aces.)

11. There are C(4,1) = 4 ways of choosing the suit.  Within the suit there are C(13,5) = 1287
of picking the 5 cards.  Hence there are 4A1247 = 5148 flushes. However, the 5148
includes the 40 straight-flushes which we must count separately.  Hence there are really
5108 flushes for a probability of .001965 (roughly).

12. A straight is characterized by its top card which can be anything from a 5 to an ace.  That
gives us 40 possible top cards.  Each of the remaining cards is known except for the
suits, for which each has C(4,1) = 4 possibilities.  The total number of straights is then
40A4A4A4A4 = 10240.  Again, we must subtract the straight-flushes (40) for a total number
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of flushes 10200, and a probability of .003925 (roughly). 

13. If you get two-pair using wildcards, give up this book and this course; give up college.
Above all else, don't play poker.  Any two-pair hand with wild-cards could be better cast
as at least 3-of-a-kind.  Hence the total number of two-pair hands is exactly the same as
in a 52-card deck as worked out in the example above, 123,552.  However, the number
of poker hands is now C(54,5) = 3,162,510.  The probability of being dealt 2-pair is
.039068.

14. Before studying this problem, you might want to review the two-pair example in the text.
Again a wild-card should not appear in a two-pair hand.  Let us first solve the problem
for the number of two-pair hands when no pair is jacks.  There are C(12,2) = 66 ways to
pick the values of the pairs.  There are C(4,2) = 6 ways of picking each of the pairs (once
the values are chosen).  There are 42 cards to pick the remaining card from (this is
because the remaining cards of the two values are excluded as well as the two wild
jacks).  There are so far 66A6A6A42 = 99,792 two-pair hands.  Let us now count the
number of two-pair hands where one pair is jacks.  There is essentially only one way we
can have two jacks (when there is another pair!) and that is the one pair of two-eyed
jacks.  There are remaining C(12,1) = 12 values for the remaining pair and out of that we
can choose C(4,2) =6 pairs.  There are 44 cards to pick the remaining card from.  Hence
the number of two-pair hands is 99,792 + 12A6A44 = 102,960.  The probability of two
pairs is then .039616 (roughly).  Hence having two wild cards out of the 52 card deck
lowers the probability of being dealt two pair.

15. (This is a fairly difficult problem; only a sadistic teacher would expect you to get it
right.)  Let us consider hands without wild-cards, there are C(12,1) = 12 ways to pick the
value of the 3-of-a-kind.  There are C(4,3) = 4 ways to pick the 3.  There are
C(11,2)AC(4,1)AC(4,1) + C(11,1)AC(4,1)AC(2,1) = 968 ways of picking the remaining two
cards (one may be a two-eyed jack).  Let us consider hands with one wild-card.  There
are C(2,1) = 2 ways of picking the wild-card.  There are C(12,1)AC(4,2) = 72 of picking
the remaining part of the 3-of-kind if not jacks.  That leaves C(11,2)AC(4,1)AC(4,1) +
C(11,1)AC(4,1)@C(2,1) = 968 of picking the last two cards .  If the three of a kind are
jacks, then the other two jacks are the two-eyed jacks and there are
C(12,2)@C(4,1)@C(4,1) = 1056 ways to pick the remaining two cards.  Let us consider
hands with two wild cards.  The wild cards are uniquely determined.  If the three-of-a-
k ind  a r e  no t  j a cks ,  t he r e  a r e  C (12 ,3 ) @C(4 ,1 ) @C(4 ,1 ) @C(4 ,1 )
+C(2,1)AC(9,2)AC(4,1)AC(4,1) = 15232 of picking the other three.  If the three-of-a-kind
are jacks, there are C(2,1) = 2 ways to pick the two-eyed jack.  The remaining two cards
must be less than a jack (otherwise the three-of-a-kind would be a higher value).  Hence
there are C(9,2)@C(4,1)@C(4,1) = 576 ways to pick the other two cards.  The total number
of hands is 12A4A968 + 2A72A968 + 2A1056 + 15232 + 2A576 = 190,272.  The probability
of 3-of-a-kind is .07321 (roughly).  Notice that the wild-cards decreases the probability
of 2-pair and greatly increases the probability of 3-of-a-kind.



Chapter 15 out of 37 from Discrete Mathematics for Neophytes:  Number Theory, Probability, Algorithms, and Other Stuff by J.  M.  Cargal

17

16. There are C(49,6) = 13,983,816 possible lottery outcomes.  The number of ways of
getting exactly 5 of the correct numbers is C(6,5)AC(43,1) = 258.  The probability is then
.0000184499 (roughly).


